
In : Lee, Jeffrey A. and Zobeck, Ted M.,  2002, Proceedings of ICAR5/GCTE-SEN Joint Conference, International  
Center for Arid and Semiarid Lands Studies, Texas Tech University, Lubbock, Texas, USA  Publication 02-2   p.50  

Scaling of surface wind speed 
 

Thomas M. Over, Department of Geology/Geography, Eastern Illinois University, Charleston, IL   
61920 (Email: tmover@eiu.edu) 

Paolo D'Odorico, Department of Environmental Sciences, University of Virginia, Charlottesville, 
VA 22904 (Email: paolo@virginia.edu) 
 

Introduction 
 

Studies of the scaling of surface wind speed have mainly considered power spectra at small 
time scales where specialized instrumentation such as hot-wire and sonic anemometers are 
required, i.e., in the turbulent inertial (microscale) range where a power law with exponent 

35−=β  is expected and has been observed (e.g., Kaimal et al., 1972), and in the turbulent 
energy production (mesoscale) range where a power law with exponent 1−=β  power law is 
predicted and observed (e.g., Katul and Chu, 1998, and references therein). In this study, 
however, we are interested in what can be seen at time scales observable by standard cup 
anemometers (i.e, at time resolutions of one minute and above, at the upper end of the mesoscale 
and above). In addition, recently more general analysis and modeling tools for scaling processes 
have been developed that go beyond the second-order statistics of power spectra and thus give a 
fuller picture of the wind structure. These have been applied to micro- and mesoscale winds by 
Lauren et al., 2001. Here these tools are applied to anemometer data with time resolutions of one 
to five minutes from Lubbock, Texas and Dodge City, Kansas. 
 

Methods 
 

Several two to four week periods of anemometer data from Lubbock, Texas, and Dodge 
City, Kansas were analyzed. For some selected series, the periods considered and some basic 
information along with some results are given in Table I. 

A multiscaling analyis following Davis et al. (1994) was performed. This consists of the 
following steps: (1) spectral analysis to identify scaling ranges, (2) singular measure analysis, 
and (3) structure function analysis. Power law behavior in the power spectrum gives the initial 
indication of scaling behavior, and the spectral exponent β gives the domain of the process, 
which is needed for the rest of the analysis. 

A singular measure analysis, as we use the term here, consists of computing the moment 
scaling function , which is given by ( )qK

( ) ( )qKqt −λλε ~, , maxmin λλλ ≤≤ ,    (1) 

where ( t, )λε  is the singular measure at time t and coarse-grained to resolution λ, .  indicates 
averaging over all times t, and minλ  and maxλ are the minimum and maximum resolutions, 

respectively, over which the scaling holds. In practice, ( )qK  is found by regressing ( )qt,log λε  

vs. λlog−  for a set of moment orders q, the slope of the regression giving . Note that in ( )qK
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the case of several scaling ranges as are observed here, different minλ , maxλ , and  apply to 
each. A special value of  is its derivative at 

( )qK
( )qK 1=q , called C , which gives the co-dimension 

of the (measure-theoretic) support of the singular measure. Qualitatively, the bigger  is, the 
more intermittent is the measure. 

1

1C

(2Kd +−=β 1 <−
1−<β

( )tϑ ζ
( )qζ

maxλλ ≤

) ( it )ϑ−
( )t

(qK ( )qζ

) q ( )11 ζ=H

0
H1−=

1 << β

01 << β
1−<β

1C

 The moment scaling function ( )qK  may be used to estimate the parameters of a process 
called a random cascade which may be used to simulate a singular measure with the desired 

 function (see, e.g., Tessier et al., 1993; Over and Gupta, 1994). ( )qK
 Singular measures have spectral power law exponents ) , thus 0<β . 
Thus if the spectral exponent of some series has the property , then the absolute or 
squared gradients of the series should be analyzed via a singular measure analysis (if 

13 −<<− β ), or gradients of gradients for smaller values of β. 
 The structure function is designed, as the discussion above suggests, to study the 
fluctuations of a process . The structure function ( )q  is defined as 

( ) qt λλϑ ~,∆ , min λ≤ ,    (2) 

where ( ) ( itt ϑλϑ λ=∆ +, . So here the resolution λ indicates the separation distance of two 
values of the process ϑ  rather than a coarse-grained version of it as it does in singular measure 
analysis. Similar to the case of the computation of ) , in practice,  is computed by 

regressing ( t,λϑ∆log  vs. λlog . A special value of ( )qζ  is  which gives the Hurst 

exponent H of fractional Brownian motion (fBm). In fact, for fBm with exponent H ( 1<< H ), 
( )q = Hqζ . For fBm, the power spectrum follows a power law with 2−β , so 0 1<< H  

implies 13 −<<− β , thus a Gaussian process with β in this range may be fBm, while if 
1<1 <− β , it could be modeled as the increments of fBm, i.e., fractional Gaussian noise (fGn). 

Thus if a process has 1− , before computing its structure function, it should be 
cumulated.  

 
Results 

 
Results of the are given below in Table I. The most significant finding was that most of the 

series showed a set of three power law scaling ranges in their power spectra, approximately from 
1-10, 10-100, and 100-1000 minutes, with β near –1 in the first, −  in the second 
(suggesting the fGn or singular measure domains), and 3 <−  in the third (suggesting 
fBm). An example spectrum from the ARS 7/01 series is given in Figure 1. It should be noted 
further that the ASOS data was originally in knots and were rounded to the nearest knot, which 
explains the large value of  for the absolute gradient in the highest frequency range. 

 
Table I. Basic information and results regarding wind data and simulations used in this 
study. All data is from the 10-m anemometer. The ASOS and ARS data are from 
Lubbock. The TTU-Mesonet site used is at Reese Center. 
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Data 
Source, 
Month 
 

Time 
Res. 
(min.) 

Duration  
(min.) 

Average 
Speed 
(m/s) 

Scale 
Range 
(minutes)

−β series
1H  

cum. 
 1H

series 
 1C

grad. 
 1C

NWS-
ASOS, 
9/00 

2 16,384 5.04 2-8 
8-128 
128-1024

0.98
0.71
2.08

0.22 
0.26 
0.24 

0.98 
0.98 
0.86 

0.004 
0.004 
0.017 

0.26 
0.051
0.066

ARS, 
7/01 

1 32,768 4.25 1-8 
8-128 
128-1024

1.24
0.62
1.81

0.20 
0.18 
0.11 

0.96 
0.95 
0.74 

0.007 
0.006 
0.017 

0.12 
0.018
0.038

TTU 
7/01 

5 40,960 4.75 5-80 
160-640 

0.79
1.91

0.30 
0.24 

0.97 
0.76 

0.005 
0.023 

0.094
0.073

TTU 
9/00 

5 40,960 4.44 5-80 
160-640 

0.78
2.01

0.30 
0.32 

0.98 
0.85 

0.004 
0.017 

0.095
0.066

Results for simulated series: 
fBm, 
H = 0.3 

1 65,536 0.20 4-2048 1.58 0.33 0.98 0.003 0.010

fGn, 
H = 0.8 

1 65,536 0.00 4-2048 0.58 0.022 0.75 0.002 0.012

 
Figure 1. Power spectrum of ARS-Lubbock 10-m wind data for July, 2001. 
 

It generally appears that the singular measure analysis is showing weak intermittency (C  
near zero), especially if other values of the gradient  are affected by rounding. This would 
suggest that fGn or fBm (and not a cascade) might be appropriate modeling/downscaling tools, 
and moment analyses (not shown) suggest the densities (though positively skewed) are not far 
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from Gaussian, and the complete structure functions (also not shown) are indeed nearly linear. 
However, the expected behavior of the series and cumulative  values, as may be seen by 
comparing the simulated fBm and fGn results, is not obtained for the data series. A basic 
conceptual issue in the use of fBm to model these series would be that they probably should be, 
on a physical basis, stationary. We note that the value of β near –1 for the highest frequency 
range matches previous results for the energy production range, though in our case, this value 
may be affected by the inertia of the instrument. Also, the behavior at the largest scale includes 
some effects of the diurnal cycle. In summary, while many questions remain to be answered, this 
analysis has a valuable window on the structure and possible modeling approaches to low 
frequency surface wind data. 

1H

 
 

Acknowledgements 
 

This project was supported by Cooperative Agreement No. 2002-35102-11585, award by the 
U.S. Department of Agriculture. 

 
References 

 
Davis, A., A. Marshak, W. Wiscombe, and R. Cahalan. 1994. Multifractal characterizations of 
nonstationary and intermittency in geophysical fields: Observed, retrieved, or simulated. J. 
Geophys. Res. 99(D4): 8055-8072. 
 
Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Cote. 1972. Spectral characteristics of 
surface-layer turbulence. Quart. J. Royal Meteorol. Soc. 98: 563-589. 
 
Katul, G. and C.-R. Chu. 1998. A theoretical and experimental investigation of energy-
containing scales in the dynamic sublayer of boundary-layer flows. Boundary-Layer Meteorol. 
86: 279-312. 
 
Lauren, M. K., M. Menabde, and G. L. Austin. 2001. Analysis and simulation of surface-layer 
winds using multiplicative cascade models with self-similar probability densities. Boundary-
Layer Meteorol. 100: 263-286. 
 
Over, T. M. and V. K. Gupta. 1994. Statistical analysis of mesoscale rainfall: Dependence of a 
random cascade generator on large-scale forcing. J. Appl. Meteorol. 33(12): 1526-1542. 
 
Tessier, Y., S. Lovejoy, and D. Schertzer. 1993. Universal multifractals: Theory and observation 
for rain and clouds. J. Appl. Meteorol. 32(2): 223-250. 
 
 
 
 
 


	Scaling of surface wind speed
	Introduction
	Studies of the scaling of surface wind speed have mainly considered power spectra at small time scales where specialized instrumentation such as hot-wire and sonic anemometers are required, i.e., in the turbulent inertial (microscale) range where a pow
	Methods



